Министерство образования и науки Астраханской области Государственное бюджетное образовательное учреждение Астраханской области высшего образования «Астраханский государственный архитектурно-строительный университет» (ГБОУ АО ВО «АГАСУ»)

И.о. первого проректора

Д.П. Стрелков/

Иодинсь И о. Ф.

2024 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Наименование дисциплины				
Моделирование и оптимизация теплотехнологических процессов				
(указывается наименование в соответствии с учебным планом)				
По направлению подготовки				
13.03.01 «Теплоэнергетика и теплотехника»				
(указывается наименование направления подготовки в соответствии с $\Phi \Gamma OC~BO$)				
Направленность (профиль)				
«Энергообеспечение предприятий»				
(указывается наименование направленности (профиля) в соответствии с ОПОП)				
Кафедра Системы автоматизированного проектирования и моделирования				
Квалификация выпускника <i>бакалавр</i>				

Разработчик:	Ol.	
к.т.н., доцент	Met	/Е.М. Евсина/
(занимаемая должность, учёная степень и учёное звание)	(подпись)	И. О. Ф.
		дании кафедры «Системы автомати-
зированного проектирования и мо	делирования» протог	кол № <u>09</u> от <u>23.04.2024 г.</u>
Заведующий кафедрой	(подпись)	/ <u>В.В. Соболева/</u> и.о. ф.
Согласовано:		
Председатель МКН «Теплоэнерге «Энергообеспечение предприятий		» направленность (профиль)
Начальник УМУ (подиясь)	Of Secrond	
Начальник УМО ВО (полиясь)	1. l. ha baulus и. о. ф.	uo
Начальник УИТ	Lya A.V.	
Заведующая научной библиотекой	(подпись)	Volpunaba. и.о.р.

Содержание

1. Цель освоения дисциплины	4
2. Перечень планируемых результатов обучения по дисциплине, соотнес	сенных с
планируемыми результатами освоения образовательной программы	4
3. Место дисциплины в структуре ОПОП бакалавриата	4
4. Объем дисциплины в зачетных единицах с указанием количества акаде	мических
часов, выделенных на контактную работу обучающихся с преподавателем (по типам
учебных занятий) и на самостоятельную работу обучающихся	5
5. Содержание дисциплины, структурированное по разделам с указанием отв	зеденного
на них количества академических часов и типов учебных занятий	6
5.1. Разделы дисциплины и трудоемкость по типам учебных занятий и	и работы
обучающихся (в академических часах)	
5.1.1. Очная форма обучения	6
5.1.2. Заочная форма обучения	7
5.2. Содержание дисциплины, структурированное по разделам	8
5.2.1. Содержание лекционных занятий	8
5.2.2. Содержание лабораторных занятий	8
5.2.3. Содержание практических занятий	8
5.2.4. Перечень учебно-методического обеспечения для самостоятельной	і работы
обучающихся по дисциплине	8
5.2.5. Темы контрольных работ	9
5.2.6. Темы курсовых проектов/ курсовых работ	9
6. Методические указания для обучающихся по освоению дисциплины	9
7. Образовательные технологии	10
8. Учебно-методическое и информационное обеспечение дисциплины	11
8.1. Перечень основной и дополнительной учебной литературы, необходи	имой для
освоения дисциплины	
8.2. Перечень информационных технологий, используемых при осуще	
образовательного процесса по дисциплине, включая перечень программного обе	спечения
	12
8.3. Перечень ресурсов информационно-телекоммуникационной сети «И	-
	12
9. Описание материально-технической базы, необходимой для осуще	
образовательного процесса по дисциплине	
10. Особенности организации обучения по дисциплине для инвалидов	
ограниченными возможностями здоровья	14

1. Цель освоения дисциплины

Целью освоения дисциплины «Моделирование и оптимизация теплотехнологических процессов» является углубление уровня освоения компетенций обучающегося в соответствии с требованиями Федерального государственного образовательного стандарта высшего образования по направлению подготовки 13.03.01 «Теплоэнергетика и теплотехника».

2. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

В результате освоения дисциплины обучающийся должен овладеть следующими компетенциями:

- ОПК 2 способностью демонстрировать базовые знания в области естественнонаучных дисциплин, готовностью выявлять естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности; применять для их разрешения основные законы естествознания, методы математического анализа и моделирования, теоретического и экспериментального исследования;
- ПК-4 способностью к проведению экспериментов по заданной методике, обработке и анализу полученных результатов с привлечением соответствующего математического аппарата.

В результате освоения дисциплин, формирующих компетенции ОПК-2, ПК-4, обучающийся должен овладеть следующими результатами обучения: знать:

- методы математического моделирования действия и устройства проектируемых изделий и объектов с обоснованием принятых технических решений для обеспечения экономической эффективности проекта (ОПК-2.1);
- основные типы математических моделей элементов теплоэнергетических систем, основные принципы построения математических моделей элементов теплоэнергетических систем, методику проведения вычислительного эксперимента с моделями элементов теплоэнергетических систем на ЭВМ (ПК-4.1).

уметь:

- решать стандартные профессиональные задачи с применением естественнонаучных и общеинженерных знаний, методов математического анализа и моделирования (ОПК-2.2);
- применять, средства и языки моделирования для анализа моделей элементов теплоэнергетических систем, интерпретировать полученные результаты моделей элементов теплоэнергетических систем, сравнивая их со справочными техническими характеристиками (ПК-4.2).

владеть:

- методами разработки физических и математических моделей исследуемых процессов, явлений и объектов, относящихся к профессиональной сфере (ОПК-2.3);
- методикой разработки и применения математических моделей теплоэнергетических систем, навыками работы с основными прикладными программными средствами для исследований элементов теплоэнергетических систем (ПК-4.3).

3. Место дисциплины в структуре ОПОП бакалавриата

Дисциплина Б1.В.ДВ.07.02 «Моделирование и оптимизация теплотехнологических процессов» реализуется в рамках Блока 1 «Дисциплины (модули)» части, формируемой участниками образовательных отношений (элективные дисциплины (по выбору)).

Дисциплина базируется на знаниях, полученных в рамках изучения следующих дисциплин: «Информатика», «Математика».

4. Объем дисциплины в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по типам учебных занятий) и на самостоятельную работу обучающихся

Форма обучения	Очная	Заочная
1	2	3
Трудоемкость в зачетных единицах:	7 семестр — 3 з.е. Всего - 3 з.е.	7 семестр — 1 з.е. 8 семестр — 2 з.е Всего - 3 з.е.
Лекции (Л)	7 семестр – 16 часов всего – 16 часов	7 семестр — 4 часа 8 семестр — 4 часа всего - 8 часов
Лабораторные занятия (ЛЗ)	учебным планом не предусмотрены	учебным планом не предусмотрены
Практические занятия (ПЗ)	7 семестр – 16 часов всего - 16 часов	7 семестр – 4 часа 8 семестр – 4 часа всего - 8 часов
Самостоятельная работа (CP)	7 семестр – 76 часов всего - 76 часов	7 семестр — 28 часов 8 семестр — 64 часа всего - 92 часа
Форма текущего контроля:		
Контрольная работа	учебным планом не предусмотрена	семестр - 8
Форма промежуточной аттес	тации:	
Экзамены	учебным планом не предусмотрен	учебным планом не предусмотрен
Зачет	семестр-7	семестр-8
Зачет с оценкой	учебным планом не предусмотрен	учебным планом не предусмотрен
Курсовая работа	учебным планом не предусмотрена	учебным планом не предусмотрена
Курсовой проект	учебным планом не предусмотрен	учебным планом не предусмотрен

5. Содержание дисциплины, структурированное по разделам с указанием отведенного на них количества академических часов и типов учебных занятий

5.1. Разделы дисциплины и трудоемкость по типам учебных занятий и работы обучающихся (в академических часах)

5.1.1. Очная форма обучения

		в на	d			и раздела (в часах) г аботы обучающихся		
No	Раздел дисциплины	часов здел	ecT		контактная			Форма текущего контроля и
п/п	(по семестрам)	Всего часов раздел	Семестр	Л	ЛЗ	ПЗ	СР	промежуточной аттестации
1	2	3	4	5	7	9	11	
1.	Раздел 1. Моделирование технологических процессов	54	7	8	-	8	38	Зачет
2.	Раздел 2. Оптимизация теплотехнологических процессов	54	7	8	-	8	38	
	Итого:	108		16	-	16	76	

5.1.2. Заочная форма обучения

		в на	d			и раздела (в часах) г аботы обучающихся		
No	Раздел дисциплины	часов здел	cT		контактная			Форма текущего контроля и
п/п	(по семестрам)	Всего часов раздел	Семестр	Л	лз	ПЗ	СР	промежуточной аттестации
1	2	3	4	5	7	9	11	
1.	Раздел 1. Моделирование технологических процессов	36	7	4	-	4	28	Зачет, контрольная работа
2.	Раздел 2. Оптимизация теплотехнологических процессов	72	8	4	-	4	64	
	Итого:	108		8	-	8	92	

5.2. Содержание дисциплины, структурированное по разделам

5.2.1. Содержание лекционных занятий

No॒	Наименование	Содержание		
212	раздела дисциплины	Содержание		
1	2	3		
1.	Раздел 1.	Введение. Моделирование технологических процессов.		
	Моделирование	Этапы моделирования. Основные этапы численного		
	технологических	решения задачи на компьютере. Классификация		
	процессов	погрешностей численного решения.		
2.	Раздел 2. Оптимизация	Введение. Примеры численного решения краевых задач		
	теплотехнологических	теплопроводности: нестационарная задача		
	процессов	теплопроводности в неоднородном стержне;		
		нестационарная задача теплопроводности в		
		неоднородной пластине; нестационарная задача		
		теплопроводности в однородном сечении		
		цилиндрической формы.		

5.2.2. Содержание лабораторных занятий

Учебным планом не предусмотрены

5.2.3. Содержание практических занятий

No	Наименование	Содержание	
	раздела дисциплины	, , , , , , , , , , , , , , , , , , ,	
1	2	3	
1.	Раздел 1.	Входное тестирование по дисциплине. Создание	
	Моделирование	математической модели теплового расчета теплообменных	
	технологических	аппаратов	
	процессов		
2.	Раздел 2. Оптимизация	Создание математической модели теплового расчета задач	
	теплотехнологических	термодинамики	
	процессов		

5.2.4. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

Очная форма

No	Наименование раздела дисциплины	Содержание	Учебно- методическое обеспечение
1	2	3	4
1.	Раздел 1. Моделирование технологических процессов	Проработка конспекта лекций и учебной литературы Подготовка к практическим занятиям Подготовка к итоговому тестированию Подготовка к зачету	[1-11]
2.	Раздел 2. Оптимизация	Проработка конспекта лекций и	[1-11]

теплотехнологических	учебной литературы	
процессов	Подготовка к практическим	
	занятиям	
	Подготовка к зачету	
	Подготовка к контрольной работе	
	Подготовка к итоговому	
	тестированию	
	Подготовка к экзамену	

Заочная форма

No॒	Наименование раздела дисциплины	Содержание	Учебно- методическое обеспечение
1	2	3	4
1.	Раздел 1. Моделирование технологических процессов	Проработка конспекта лекций и учебной литературы Подготовка к практическому занятию Подготовка к контрольной работе Подготовка к итоговому тестированию Подготовка к зачету	[1-11]
2.	Раздел 2. Оптимизация теплотехнологических процессов	Проработка конспекта лекций и учебной литературы Подготовка к практическому занятию Подготовка к контрольной работе Подготовка к итоговому тестированию Подготовка к зачету	[1-11]

5.2.5. Темы контрольных работ

1. Математические модели теплоэнергетики

5.2.6. Темы курсовых проектов/ курсовых работ

Учебным планом не предусмотрены.

6. Методические указания для обучающихся по освоению дисциплины

<u>Лекция</u>
В ходе лекционных занятий необходимо вести конспектирование учебного
материала, обращать внимание на категории, формулировки, раскрывающие
содержание тех или иных явлений и процессов, научные выводы и практические
рекомендации. Необходимо задавать преподавателю уточняющие вопросы с целью
уяснения теоретических положений, разрешения спорных ситуаций. Целесообразно
дорабатывать свой конспект лекции, делая в нем соответствующие записи из
литературы, рекомендованной преподавателем и предусмотренной учебной
программой.

Организация деятельности студента

Практические занятия

Работа с конспектом лекций, подготовка ответов к контрольным вопросам, просмотр рекомендуемой литературы. Особое внимание при этом необходимо обратить на содержание основных положений и выводов, объяснение явлений и фактов, уяснение практического приложения рассматриваемых теоретических вопросов. Решение задач по алгоритму и др.

Самостоятельная работа

Самостоятельная работа студента над усвоением учебного материала по учебной дисциплине может выполняться в помещениях для самостоятельной работы, а также в домашних условиях. Содержание самостоятельной работы студента определяется учебной программой дисциплины, методическими материалами, заданиями и указаниями преподавателя.

Самостоятельная работа в аудиторное время может включать:

- конспектирование (составление тезисов) лекций;
- выполнение контрольных работ;
- решение задач;
- работу со справочной и методической литературой;
- работу с нормативными правовыми актами.

Самостоятельная работа во внеаудиторное время может состоять из:

- повторение лекционного материала;
- подготовки к лабораторным занятиям;
- изучения учебной и научной литературы;
- подготовка к тестированию;
- подготовки к контрольным работам и т.д.;
- выделение наиболее сложных и проблемных вопросов по изучаемой теме, получение разъяснений и рекомендаций по данным вопросам с преподавателями кафедры на их еженедельных консультациях;
- проведение самоконтроля путем ответов на вопросы текущего контроля знаний, решения представленных в учебно-методических материалах кафедры задач, тестов.

Контрольная работа

Теоретическая и практическая части контрольной работы выполняются по установленным темам (вариантам) с использованием практических материалов, полученных на лабораторных занятиях. К каждой теме контрольной работы рекомендуется примерный перечень основных вопросов, список необходимой литературы. Необходимо изучить литературу, рекомендуемую для выполнения контрольной работы. Чтобы полнее раскрыть тему, следует использовать дополнительные источники и материалы. Инструкция по выполнению контрольной работы находится в методических материалах по дисциплине

Подготовка к зачету:

Подготовка студентов к зачету включает три стадии:

- самостоятельная работа в течение семестра;
- непосредственная подготовка в дни, предшествующие зачету;
- подготовка к ответу на вопросы, содержащиеся в билете.

7. Образовательные технологии

Перечень образовательных технологий, используемых при изучении дисциплины «Моделирование и оптимизация теплотехнологических процессов».

Традиционные образовательные технологии

Дисциплина «Математическое моделирование теплотехнологических процессов», проводятся с использованием традиционных образовательных технологий ориентирующиеся на организацию образовательного процесса, предполагающую прямую трансляцию знаний от преподавателя к студенту (преимущественно на основе объяснительно-иллюстративных методов обучения), учебная деятельность студента

носит в таких условиях, как правило, репродуктивный характер. Формы учебных занятий с использованием традиционных технологий:

Лекция — последовательное изложение материала в дисциплинарной логике, осуществляемое преимущественно вербальными средствами (монолог преподавателя).

Практические занятия - занятие, посвященное освоению конкретных умений и навыков по предложенному алгоритму.

Интерактивные технологии

По дисциплине «Моделирование и оптимизация теплотехнологических процессов» лекционные занятия проводятся с использованием следующих интерактивных технологий:

Лекция-визуализация - представляет собой визуальную форму подачи лекционного материала средствами ТСО или аудиовидеотехники (видео-лекция). Чтение такой лекции сводится к развернутому или краткому комментированию просматриваемых визуальных материалов (в виде схем, таблиц, графов, графиков, моделей). Лекция-визуализация помогает студентам преобразовывать лекционный материал в визуальную форму, что способствует формированию у них профессионального мышления за счет систематизации и выделения наиболее значимых, существенных элементов.

По дисциплине «Математическое моделирование теплоэнергетических систем» практические занятия проводятся с использованием следующих интерактивных технологий:

Работа в малых группах — это одна из самых популярных стратегий, так как она дает всем обучающимся (в том числе и стеснительным) возможность участвовать в работе, практиковать навыки сотрудничества, межличностного общения (в частности, умение активно слушать, вырабатывать общее мнение, разрешать возникающие разногласия). Все это часто бывает невозможно в большом коллективе.

8. Учебно-методическое и информационное обеспечение дисциплины

8.1. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины

- а) основная учебная литература:
- 1. Колбин В.В. Специальные методы оптимизации. 1-е изд. Изд-во «Лань». $2014.-384~\mathrm{c}.$
- 2. Юрьева А.А. Математическое программирование. 2-е изд. исправ. и доп. Изд-во «Лань». 2014.-480 стр.
- 3. Семенов Б.А. Инженерный эксперимент в промышленной теплотехнике, теплоэнергетике и теплотехнологиях, Изд-во «Лань». 2013. 400 стр.
- 4. Данилов Н. Н. Математическое моделирование: учебное пособие для вузов, Кемерово: Издательство Кемеровский государственный университет, 2014. 98 стр. [Электронный ресурс] Режим доступа:

http://biblioclub.ru/index.php?page=book_view_red&book_id=278827

- б) дополнительная учебная литература:
- 5. Аверченков В.И., Федоров В.П., Хейфец М.Л. Основы математического моделирования технических систем: учебное пособие, Москва: Флинта, 2016. 271 с. [Электронный ресурс] Режим доступа:

https://biblioclub.ru/index.php?page=book_view_red&book_id=93344

6. Ляшков В. И. Математическое моделирование и алгоритмизация задач теплоэнергетики: Тамбов: Издательство ФГБОУ ВПО «ТГТУ», 2012. – 139 стр. [Электронный ресурс] Режим доступа:

http://biblioclub.ru/index.php?page=book_view_red&book_id=277818

7. Никулин К.С. Математическое моделирование в системе MATCAD: лабораторный практикум: учебное пособие. М.: Альтаир, МГАВТ, 2008.-128 стр. [Электронный ресурс] Режим доступа:

http://biblioclub.ru/index.php?page=book_view_red&book_id=430749

- в) перечень онлайн курсов:
 - 8. «Математическое моделирование теплоэнергетических систем» https://www.intuit.ru/studies/courses/83/83/info

8.2. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения

- 7-Zip
- Office 365 A1
- Adobe Acrobat Reader DC
- Google Chrome
- VLC media player
- Apache Open Office
- Office Pro Plus Russian OLPNL Academic Edition
- Kaspersky Endpoint Security
- Internet Explorer
- Visual Studio
- Microsoft Visio
- Microsoft Azure Dev Tools for Teaching
- Bizagi Process Modeler
- Aris Express

8.3. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

- 1. Электронная информационно-образовательная среда Университета:
- 1.1. образовательный портал (http://moodle.aucu.ru)
 - 2. Электронно-библиотечные системы:
- 2.1.«Электронно-библиотечная система «Университетская библиотека» (https://biblioclub.ru/).
 - 3. Электронные базы данных:
- 3.1. Научная электронная библиотека (http://www.elibrary.ru/)

9. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

№	Наименование специальных	Оснащенность специальных помещений и помещений			
	помещений и помещений для	для самостоятельной работы			
	самостоятельной работы				
1.	Аудитория для лекционных	№207			
	занятий	Комплект учебной мебели			
		Компьютеры – 16 шт.			
	414056, г. Астрахань, ул.	Доступ к информационно –			
	Татищева, 18, аудитории	телекоммуникационной сети «Интернет			
	№207, 209, 211	№209			
		Комплект учебной мебели			
		Компьютеры – 16 шт.			
		Стационарный мультимидийный комплект			
		Доступ к информационно –			
		телекоммуникационной сети «Интернет»			
		No211			
		Комплект учебной мебели			
		Компьютеры – 16 шт.			

		Стационарный мультимедийный комплект
		Доступ к информационно –
		телекоммуникационной сети «Интернет»
2.	Аудитории для практических	№207
2.	занятий	Комплект учебной мебели
	ииткные	Компьютеры – 16 шт.
	414056 F. Agrayayi, M.	•
	414056, г. Астрахань, ул.	Доступ к информационно –
	Татищева, 18, аудитории	телекоммуникационной сети «Интернет
	№207, 209, 211	<u>№</u> 209
		Комплект учебной мебели
		Компьютеры – 16 шт.
		Стационарный мультимидийный комплект
		Доступ к информационно –
		телекоммуникационной сети «Интернет»
		№211
		Комплект учебной мебели
		Компьютеры – 16 шт.
		Стационарный мультимедийный комплект
		Доступ к информационно –
		телекоммуникационной сети «Интернет»
3.	Аудитории для групповых и	№ 207
	индивидуальных консультаций	Комплект учебной мебели
		Компьютеры – 16 шт.
	414056, г. Астрахань, ул.	Доступ к информационно –
	Татищева, 18, аудитории	телекоммуникационной сети «Интернет
	№207, 209, 211	№209
	, ,	Комплект учебной мебели
		Компьютеры – 16 шт.
		Стационарный мультимидийный комплект
		Доступ к информационно –
		телекоммуникационной сети «Интернет»
		Nº211
		Комплект учебной мебели
		Компьютеры – 16 шт.
		Стационарный мультимедийный комплект
		Доступ к информационно –
		доступ к информационно – телекоммуникационной сети «Интернет»
4.	Aviavanania and movember	№207
4.	Аудитория для текущего	
	контроля и промежуточной	Комплект учебной мебели
	аттестации	Компьютеры – 16 шт.
	414056 T. A OTTOWNY VIT	Доступ к информационно –
	414056, г. Астрахань, ул.	телекоммуникационной сети «Интернет
	Татищева, 18, аудитории	<u>№</u> 209
	№207, 209, 211	Комплект учебной мебели
		Компьютеры – 16 шт.
		Стационарный мультимидийный комплект
		Доступ к информационно –
		телекоммуникационной сети «Интернет»
		N <u>2</u> 11
		Комплект учебной мебели
		Компьютеры – 16 шт.
		Стационарный мультимедийный комплект
		Доступ к информационно –
		телекоммуникационной сети «Интернет»
5.	Аудитории для	№ 201
	самостоятельной работы	Комплект учебной мебели
	•	

	414056, г. Астрахань, ул.	Компьютеры – 8 шт.		
	Татищева, 22а, аудитории	Доступ к информационно –		
	№ 201, 203	телекоммуникационной сети «Интернет		
		№203		
	414056	Комплект учебной мебели		
	414056, г. Астрахань, ул.	Компьютеры – 8 шт.		
	Татищева №18 а, библиотека, читальный зал	Доступ к информационно –		
	читальный зал	телекоммуникационной сети «Интернет»		
		библиотека, читальный зал		
		Комплект учебной мебели.		
		Компьютеры - 4 шт.		
		Доступ к информационно –		
		телекоммуникационной сети «Интернет».		
6.	Аудитория для хранения и	№8		
	профилактического	Комплект мебели		
	обслуживания учебного	Расходные материалы для профилактического		
	оборудования	обслуживания учебного оборудования,		
	414056, г. Астрахань, ул.	вычислительная и орг. техника на хранении		
	Татищева, 18, аудитория №8			

10. Особенности организации обучения по дисциплине для инвалидов и лиц с ограниченными возможностями здоровья

Для обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья на основании письменного заявления дисциплина «Моделирование и оптимизация теплотехнологических процессов» реализуется с учетом особенностей психофизического развития, индивидуальных возможностей и состояния здоровья (далее – индивидуальных особенностей).

Лист внесения дополнений и изменений в рабочую программу учебной дисциплины «Моделирование и оптимизация теплотехнологических процессов» (наименование дисциплины)

на 20__- 20__ учебный год

Рабочая программа перес проектирования и модели		нии кафедры «С	истем автоматизиро	ванного
протокол № от	-			
Зав. кафедрой			/	/
ученая степень, ученое звание	подпись	_	И.О. Фамилия	/
В рабочую программу вно	•			
1				
3				
4				
5				
Составители изменений и	дополнений:			,
ученая степень, ученое звание	подпись	<u> </u>	/И.О. Фамилия	/
•				
ученая степень, ученое звание	подпись	_ / <u>-</u>	И.О. Фамилия	/
Председатель МКН «Т	еплоэнергетика и	теплотехника»	направленность (п	рофиль`
		,,	1 (**)	1 1 2)
«Энергетика теплотехнол	UI ии»			
ученая степень, ученое звание	подпись	_ /_	И.О. Фамилия	/
, in a cronoun, y tenoe spanne	подинев		п.о. Фимплил	
« » 20	Γ.			

Аннотация

к рабочей программе дисциплины (модуля) «Моделирование и оптимизация теплотехнологических процессов»

по направлению подготовки 13.03.01. «Теплоэнергетика и теплотехника» направленность (профиль) «Энергообеспечение предприятий»

Общая трудоемкость дисциплины составляет 3 зачетных единиц Форма промежуточной аттестации: экзамен

Целью освоения дисциплины «Моделирование и оптимизация теплотехнологических процессов» является углубление уровня освоения компетенций обучающегося в соответствии с требованиями Федерального государственного образовательного стандарта высшего образования по направлению подготовки 13.03.01 «Теплоэнергетика и теплотехника».

Учебная дисциплина Б1.В.ДВ.07.02 «Моделирование и оптимизация теплотехнологических процессов» реализуется в рамках Блока 1 «Дисциплины (модули)» части, формируемой участниками образовательных отношений (элективные дисциплины (по выбору)).

Дисциплина базируется на знаниях, полученных в рамках изучения следующих дисциплин: «Информатика», «Математика».

Краткое содержание дисциплины:

Раздел 1. Моделирование технологических процессов.

Раздел 2. Оптимизация теплотехнологических процессов.

Заведующий кафедрой

/<u>В.В. Соболева/</u> И.О.Ф.

16

РЕЦЕНЗИЯ

на рабочую программу, оценочные и методические материалы по дисциплине Б1.В.ДВ.07.02 «Моделирование и оптимизация теплотехнологических процессов»

ОПОП ВО по направлению подготовки 13.03.01 «Теплоэнергетика и теплотехника», направленность (профиль) "Энергообеспечение предприятий" по программе бакалавриата

Г.А. Поповым (далее по тексту рецензент), проведена рецензия рабочей программы, оценочных и методических материалов по дисциплине «Моделирование и оптимизация теплотехнологических процессов» ОПОП ВО по направлению подготовки 13.03.01 «Теплоэнергетика и теплотехника», по программе бакалавриата, разработанной в ГАОУ АО ВО "Астраханский государственный архитектурно-строительный университет", на кафедре систем автоматизированного проектирования и моделирования (разработчик — доиент, к.т.н. Евсина Е.М.).

Рассмотрев представленные на рецензию материалы, рецензент пришел к следующим выводам:

Предъявленная рабочая программа учебной дисциплины «Моделирование и теплотехнологических (далее по тексту Программа) процессов» соответствует требованиям ΦΓΟС BO ПО направлению подготовки 13.03.01 «Теплоэнергетика и теплотехника», утвержденного приказом Министерства образования и науки Российской Федерации от 01.10.2015 №1081 и зарегистрированного в Минюсте России 30.10.2015 №39559.

Представленная в Программе актуальность учебной дисциплины в рамках реализации ООП ВО не подлежит сомнению – дисциплина относится к вариативной части (дисциплины по выбору) Блок 1. «Дисциплины (модули)».

Представленные в Программе цели учебной дисциплины соответствуют требованиям ФГОС ВО направления подготовки **13.03.01** «**Теплоэнергетика и теплотехника**», направленность (профиль) «Энергообеспечение предприятий».

В соответствии с Программой за дисциплиной «Моделирование и оптимизация теплотехнологических процессов» закреплены две компетенции, которые реализуются в объявленных требованиях.

Результаты обучения, представленные в Программе в категориях знать, уметь, владеть соответствуют специфике и содержанию дисциплины и демонстрируют возможность получения заявленных результатов.

Информация о взаимосвязи изучаемых дисциплин и вопросам исключения дублирования в содержании дисциплин соответствует действительности. Учебная дисциплина «Моделирование и оптимизация теплотехнологических процессов» взаимосвязана с другими дисциплинами ОПОП ВО по направлению подготовки 13.03.01 «Теплоэнергетика и теплотехника», направленность (профиль) "Энергообеспечение предприятий" и возможность дублирования в содержании отсутствует.

Представленная Программа предполагает использование современных образовательных технологий при реализации различных видов учебной работы. Формы образовательных технологий соответствуют специфике дисциплины.

Представленные и описанные в Программе формы текущей оценки знаний соответствуют специфике дисциплины и требованиям к выпускникам.

Форма промежуточной аттестации знаний *бакалавра*, предусмотренная Программой, осуществляется в форме *зачета*. Формы оценки знаний, представленные в Рабочей программе, соответствуют специфике дисциплины и требованиям к выпускникам.

Учебно-методическое обеспечение дисциплины представлено основной, дополнительной литературой, интернет-ресурсами и соответствует требованиям ФГОС

ВО направления подготовки 13.03.01 «Теплоэнергетика и теплотехника», направленность (профиль) «Энергообеспечение предприятий».

Материально-техническое обеспечение соответствует требованиям ФГОС ВО направления подготовки 13.03.01 «Теплоэнергетика и теплотехника» и специфике дисциплины «Моделирование и оптимизация теплотехнологических процессов и обеспечивает использование современных образовательных, в том числе интерактивных, методов обучения.

Представленные на рецензию оценочные и методические материалы направления подготовки 13.03.01 «Теплоэнергетика и теплотехника» разработаны в соответствии с нормативными документами, представленными в программе. Оценочные и методические материалы по дисциплине «Моделирование и оптимизация теплотехнологических процессов» предназначены для текущего контроля и промежуточной аттестации и представляют собой совокупность разработанных кафедрой «Системы автоматизированного проектирования и моделирование» материалов для установления уровня и качества достижения обучающимися результатов обучения.

Задачами оценочных и методических материалов является контроль и управление процессом, приобретения обучающимися знаний, умений, навыков и компетенций, заявленных в образовательной программе по данному направлению.

Оценочные и методические материалы по дисциплине «Моделирование и оптимизация теплотехнологических процессов» представлены: типовыми вопросами к зачету, типовыми заданиями к контрольной работе, устному опросу.

Данные материалы позволяют в полной мере оценить результаты обучения по дисциплине «Моделирование и оптимизация теплотехнологических процессов» в АГАСУ, а также оценить степень сформированности коммуникативных умений и навыков в сфере профессионального общения.

ОБЩИЕ ВЫВОДЫ

На основании проведенной рецензии можно сделать заключение, что характер, структура и содержание рабочей программы, оценочных и методических материалов дисциплины «Моделирование и оптимизация теплотехнологических процессов» ОПОП ВО по направлению подготовки 13.03.01 «Теплоэнергетика и теплотехника», по программе бакалавриата, разработанная доцентом, к.т.н Евсиной Е.М. соответствует требованиям ФГОС ВО, современным требованиям отрасли, рынка труда, профессиональных стандартов направления подготовки 13.03.01 «Теплоэнергетика и теплотехника», направленность (профиль) "Энергообеспечение предприятий".

Рецензент:

Зав. каф. «Информационная безопасность» Института информационных технологий и коммуникаций ФГБОУ ВО «Астраханский государственный технический университет», д.т.н., профессор

РЕЦЕНЗИЯ

на рабочую программу, оценочные и методические материалы по дисциплине Б1.В.ДВ.07.02 «Моделирование и оптимизация теплотехнических процессов»

ОПОП ВО по направлению подготовки 13.03.01 «Теплоэнергетика и теплотехника», направленность (профиль) "Энергообеспечение предприятий" по программе бакалавриата

Т.Ф. Шамсудиновым (далее по тексту рецензент), проведена рецензия рабочей программы, оценочных и методических материалов по дисциплине «Моделирование и оптимизация теплотехнологических процессов» ОПОП ВО по направлению подготовки 13.03.01 «Теплоэнергетика и теплотехника», по программе бакалавриата, разработанной в ГАОУ АО ВО "Астраханский государственный архитектурностроительный университет", на кафедре систем автоматизированного проектирования и моделирования (разработчик – доцент, к.т.н. Евсина Е.М.).

Рассмотрев представленные на рецензию материалы, рецензент пришел к следующим выводам:

Предъявленная рабочая программа учебной дисциплины «Моделирование и оптимизация теплотехнологических процессов» (далее по тексту Программа) соответствует требованиям ФГОС ВО по направлению подготовки *13.03.01* «*Теплоэнергетика и теплотехника*», утвержденного приказом Министерства образования и науки Российской Федерации от 01.10.2015 №1081 и зарегистрированного в Минюсте России 30.10.2015 №39559.

Представленная в Программе актуальность учебной дисциплины в рамках реализации ООП ВО не подлежит сомнению – дисциплина относится к вариативной части (дисциплины по выбору) Блок 1. «Дисциплины (модули)».

Представленные в Программе цели учебной дисциплины соответствуют требованиям ФГОС ВО направления подготовки **13.03.01** «**Теплоэнергетика и теплотехника**», направленность (профиль) «Энергообеспечение предприятий».

В соответствии с Программой за дисциплиной «Моделирование и оптимизация теплотехнологических процессов» закреплены две компетенции, которые реализуются в объявленных требованиях.

Результаты обучения, представленные в Программе в категориях знать, уметь, владеть соответствуют специфике и содержанию дисциплины и демонстрируют возможность получения заявленных результатов.

Информация о взаимосвязи изучаемых дисциплин и вопросам исключения дублирования в содержании дисциплин соответствует действительности. Учебная дисциплина «Моделирование и оптимизация теплотехнологических процессов» взаимосвязана с другими дисциплинами ОПОП ВО по направлению подготовки 13.03.01 «Теплоэнергетика и теплотехника», направленность (профиль) "Энергообеспечение предприятий" и возможность дублирования в содержании отсутствует.

Представленная Программа предполагает использование современных образовательных технологий при реализации различных видов учебной работы. Формы образовательных технологий соответствуют специфике дисциплины.

Представленные и описанные в Программе формы текущей оценки знаний соответствуют специфике дисциплины и требованиям к выпускникам.

Форма промежуточной аттестации знаний *бакалавра*, предусмотренная Программой, осуществляется в форме зачета. Формы оценки знаний, представленные в Рабочей программе, соответствуют специфике дисциплины и требованиям к выпускникам.

Учебно-методическое обеспечение дисциплины представлено основной, дополнительной литературой, интернет-ресурсами и соответствует требованиям ФГОС ВО направления подготовки 13.03.01 «Теплоэнергетика и теплотехника», направленность (профиль) «Энергообеспечение предприятий».

Материально-техническое обеспечение соответствует требованиям Φ ГОС ВО направления подготовки 13.03.01 «Теплоэнергетика и теплотехника» и специфике дисциплины «Моделирование и оптимизация теплотехнологических процессов и обеспечивает использование современных образовательных, в том числе интерактивных, методов обучения.

Представленные на рецензию оценочные и методические материалы направления подготовки 13.03.01 «Теплоэнергетика и теплотехника» разработаны в соответствии с нормативными документами, представленными в программе. Оценочные и методические материалы по дисциплине «Моделирование и оптимизация теплотехнологических процессов» предназначены для текущего контроля и промежуточной аттестации и представляют собой совокупность разработанных кафедрой «Системы автоматизированного проектирования и моделирование» материалов для установления уровня и качества достижения обучающимися результатов обучения.

Задачами оценочных и методических материалов является контроль и управление процессом, приобретения обучающимися знаний, умений, навыков и компетенций, заявленных в образовательной программе по данному направлению.

Оценочные и методические материалы по дисциплине «Моделирование и оптимизация теплотехнологических процессов» представлены: типовыми вопросами к зачету, типовыми заданиями к контрольной работе, устному опросу.

Данные материалы позволяют в полной мере оценить результаты обучения по дисциплине «Моделирование и оптимизация теплотехнологических процессов» в АГАСУ, а также оценить степень сформированности коммуникативных умений и навыков в сфере профессионального общения.

ОБЩИЕ ВЫВОДЫ

На основании проведенной рецензии можно сделать заключение, что характер, структура и содержание рабочей программы, оценочных и методических материалов дисциплины «Моделирование и оптимизация теплотехнологических процессов» ОПОП ВО по направлению подготовки 13.03.01 «Теплоэнергетика и теплотехника», по программе бакалавриата, разработанная доцентом, к.т.н Евсиной Е.М. соответствует требованиям ФГОС ВО, современным требованиям отрасли, рынка труда, профессиональных стандартов направления подготовки 13.03.01 «Теплоэнергетика и теплотехника», направленность (профиль) "Энергообеспечение предприятий".

Рецензент: Директор, ООО «НПРФ «Ярканон»

... 0. . .

Министерство образования и науки Астраханской области Государственное бюджетное образовательное учреждение Астраханской области высшего образования «Астраханский государственный архитектурно-строительный университет» (ГБОУ АО ВО «АГАСУ»)

УТВЕРЖДАЮ И.о. первого проректора С.П. Стрелков/ **И.о. Ф. 2024** г.

ОЦЕНОЧНЫЕ И МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ

Наименоваі	ние дисциплины
	Моделирование и оптимизация теплотехнологических процессов
	(указывается наименование в соответствии с учебным планом)
По направл	ению подготовки
	13.03.01 «Теплоэнергетика и теплотехника»
(указыва	ется наименование направления подготовки в соответствии с ФГОС ВО)
Направлені	ность (профиль)
«Эн	ергообеспечение предприятий»
	(указывается наименование профиля в соответствии с ОПОП)
Кафедра	Системы автоматизированного проектирования и моделирования

Квалификация выпускника бакалавр

№ <u>09</u> от <u>23.04.2024 г.</u>		
Заведующий кафедрой	(подпись)	/ <u>В.В. Соболева/</u> И.О.Ф.
Согласовано:		
«Энергообеспечение предприя		ика» направленность (профиль)
Начальник УМУ (подпис) Начальник УМО ВО (подпис)	Melbeenards W.S. D Labarensia (B) V.O. D	EC.

Оценочные и методические материалы рассмотрены и утверждены на заседании кафедры

проектирования

И

/E.M. Евсина/

И.О.Ф.

моделирования»

протокол

Разработчик:

<u>К.Т.Н., ДОЦЕНТ</u> (занимаемая должность,

учёная степень и учёное звание)

автоматизированного

СОДЕРЖАНИЕ

1. Оценочные и методические материалы для проведения текущего контроля	
успеваемости и промежуточной аттестации обучающихся по дисциплине	4
1.1. Перечень компетенций с указанием этапов их формирования в процессе освое	ения
образовательной программы	4
1.2. Описание показателей и критериев оценивания компетенций на различных эт	апах
их формирования, описание шкал оценивания	6
1.2.1. Перечень оценочных средств текущего контроля успеваемости	
1.2.2. Описание показателей и критериев оценивания компетенций по дисциплине	е на
различных этапах их формирования, описание шкал оценивания	7
1.2.3. Шкала оценивания	
2. Типовые контрольные задания или иные материалы, необходимые для оценки	
знаний, умений, навыков, характеризующих этапы формирования компетенций в	
процессе освоения образовательной программ	11
3. Перечень и характеристики процедуры оценивания знаний, умений, навыков,	
характеризующих этапы формирования компетенций	15
Приложение 1	
Приложение 2	
Приложение 3	
Приложение 4	
Приложение 5	

1. Оценочные и методические материалы для проведения текущего контроля успеваемости и промежуточной аттестации обучающихся по дисциплине

Оценочные и методические материалы являются неотъемлемой частью рабочей программы (далее РПД) дисциплины и представлен в виде отдельного документа

1.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы

Индекс и формулировка	Индикаторы достижений	Номер р	раздела	Формы контроля с
компетенции N	компетенций, установленные ОПОП	дисциплины (в		конкретизацией задания
	-	соответ	ствии с	
		п.5.11	РПД)	
		1	2	
1	2	3	4	5
ОПК – 2:	Знать:		•	
способностью демонстрировать	методы математического	X	X	
базовые знания в области	моделирования действия и устройства			Опрос устный,
естественнонаучных дисциплин,	проектируемых изделий и объектов с			вопросы: 1-6
готовностью выявлять	обоснованием принятых технических			
естественнонаучную сущность	решений для обеспечения			зачет,
проблем, возникающих в ходе	экономической эффективности проекта			вопросы: 1-7
профессиональной деятельности;	Уметь:			
применять для их разрешения	решать стандартные профессиональные	X	X	коллоквиум
основные законы естествознания,	задачи с применением			вопросы: 1-7
методы математического анализа и	естественнонаучных и общеинженерных			
моделирования, теоретического и	знаний, методов математического			контрольная работа,
экспериментального исследования	анализа и моделирования			задания: 1-2
	Владеть:		1	
	методами разработки физических и	X	X	итоговое тестирование
	математических моделей исследуемых			вопросы: 1-7
	процессов, явлений и объектов,			
	относящихся к профессиональной			
	сфере			

ПК-4: способностью к проведению	Знать:			
экспериментов по заданной	основные типы математических	X	X	Опрос устный,
методике, обработке и анализу	моделей элементов			вопросы: 1-5
полученных результатов с	теплоэнергетических систем, основные			
привлечением соответствующего	принципы построения математических			зачет,
математического аппарата	моделей элементов			вопросы: 1-8
	теплоэнергетических систем, методику			
	проведения вычислительного			коллоквиум
	эксперимента с моделями элементов			вопросы: 1-8
	теплоэнергетических систем на ЭВМ			
	Уметь:			контрольная работа,
	применять, средства и языки	X	X	задания: 1-2
	моделирования для анализа моделей			
	элементов теплоэнергетических			
	систем, интерпретировать полученные			итоговое тестирование
	результаты моделей элементов			вопросы: 1-8
	теплоэнергетических систем,			
	сравнивая их со справочными			
	техническими характеристиками			
	Владеть:			
	методикой разработки и применения	X	X	
	математических моделей			
	теплоэнергетических систем,			
	навыками работы с основными			
	прикладными программными средствами			
	для исследований элементов			
	теплоэнергетических систем			

1.2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

1.2.1. Перечень оценочных средств текущего контроля успеваемости

Наименование оценочного	Краткая характеристика оценочного средства	Представление оценочного средства в
средства	ередетва	фонде
1	2	3
Коллоквиум	Средство контроля усвоения учебного	Вопросы по
	материала темы, раздела или разделов	темам/разделам
	дисциплины, организованное как учебное	дисциплины
	занятие в виде собеседования	
	преподавателя с обучающимися	
Опрос устный	Средство контроля усвоения учебного	Вопросы по
	материала темы, раздела или разделов	темам/разделам
	дисциплины, организованное как учебное	дисциплины
	занятие в виде опроса студентов	
Контрольная	Средство проверки умений применять	Комплект
работа	полученные знания для решения задач	контрольных заданий
	определенного типа по теме или разделу	по вариантам
	Система стандартизированных заданий,	
Тестирование	позволяющая автоматизировать процедуру	Фонд тестовых
тсстирование	измерения уровня знаний и умений	заданий
	обучающегося	

1.2.2. Описание показателей и критериев оценивания компетенций по дисциплине на различных этапах их формирования, описание шкал оценивания

Компетенция,	Планируемые	Показатели и критерии оценивания результатов обучения				
этапы	результаты обучения	Ниже порогового	Пороговый уровень	Продвинутый	Высокий уровень	
освоения		уровня	(Зачтено)	уровень	(Зачтено)	
компетенции		(не зачтено)		(Зачтено)		
1	2	3	4	5	6	
ОПК – 2 - способностью демонстриров ать базовые знания в области естественнона учных дисциплин, готовностью	Знает: методы математического моделирования действия и устройства проектируемых изделий и объектов с обоснованием принятых технических решений для обеспечения экономической эффективности проекта	Обучающийся не знает и не понимает методы математического моделирования действия и устройства проектируемых изделий и объектов с обоснованием принятых технических решений для обеспечения экономической	Обучающийся знает методы математического моделирования действия и устройства проектируемых изделий и объектов с обоснованием принятых технических решений для обеспечения экономической	Обучающийся знает методы математического моделирования действия и устройства проектируемых изделий и объектов с обоснованием принятых технических решений для обеспечения	Обучающийся знает методы математического моделирования действия и устройства проектируемых изделий и объектов с обоснованием принятых технических решений для обеспечения экономической эффективности проекта в	
выявлять естественнона учную сущность проблем, возникающих		эффективности проекта	эффективности проекта в типовых ситуациях.	ооеспечения экономической эффективности проекта в ситуациях повышенной сложности	ситуациях повышенной сложности, а также в нестандартных и непредвиденных ситуациях, создавая при этом новые правила и алгоритмы действий.	
в ходе профессионал ьной деятельности; применять для их разрешения основные законы естествознани	Умеет: организовывать и осуществлять сбор, обработку, анализ и систематизацию научнотехнической информации по теме исследования	Обучающийся не умеет организовывать и осуществлять сбор, обработку, анализ и систематизацию научнотехнической информации по теме исследования	Обучающийся умеет организовывать и осуществлять сбор, обработку, анализ и систематизацию научнотехнической информации по теме исследования в типовых ситуациях	Обучающийся организовывать и осуществлять сбор, обработку, анализ и систематизацию научно-технической информации по теме исследования в типовых ситуациях и ситуациях повышенной	Обучающийся умеет организовывать и осуществлять сбор, обработку, анализ и систематизацию научнотехнической информации по теме исследования в ситуациях повышенной сложности, а также в нестандартных и непредвиденных	

я, методы				сложности	ситуациях, создавая при
математическ					этом новые правила и
ого анализа и	70	0.5	0.5	0.5	алгоритмы действий
моделировани	Владеет:	Обучающийся не владеет	Обучающийся владеет	Обучающийся владеет	Обучающийся владеет
я,	методами разработки	методами разработки	методами разработки	методами разработки	методами разработки
теоретическог	физических и	физических и	физических и	физических и	физических и
ои	математических моделей	математических моделей	математических	математических	математических моделей
эксперимента	исследуемых процессов,	исследуемых процессов, явлений и объектов,	моделей исследуемых процессов, явлений и	моделей исследуемых	исследуемых процессов, явлений и объектов,
льного	явлений и объектов, относящихся к	явлений и объектов, относящихся к	процессов, явлений и объектов, относящихся	процессов, явлений и объектов, относящихся	относящихся к
исследования	профессиональной сфере	профессиональной сфере	к профессиональной	к профессиональной	профессиональной сфере
	профессиональной сфере	профессиональной сфере	сфере в типовых	сфере в типовых	в ситуациях повышенной
			ситуациях.	ситуациях и ситуациях	сложности, а также в
				повышенной	нестандартных и
				сложности.	непредвиденных
					ситуациях, создавая при
					этом новые правила и
					алгоритмы действий
ПК- 4—	Знает:	Обучающийся не знает	Обучающийся знает	Обучающийся знает	Обучающийся знает
способностью	математических	основные типы	основные типы	основные типы	основные типы
к проведению	моделей элементов	математических	математических	математических	математических
эксперименто	теплоэнергетических	моделей элементов	моделей элементов	моделей элементов	моделей элементов
в по заданной	систем, основные	теплоэнергетических	теплоэнергетических	теплоэнергетических	теплоэнергетических
методике,	принципы построения	систем, основные	систем, основные	систем, основные	систем, основные
обработке и	математических	принципы построения	принципы построения	принципы	принципы построения
анализу	моделей элементов	математических	математических	построения	математических
полученных	теплоэнергетических	моделей элементов	моделей элементов	математических	моделей элементов
результатов с	систем, методику	теплоэнергетических	теплоэнергетических	моделей элементов	теплоэнергетических
привлечением	проведения	систем, методику	систем, методику	теплоэнергетических	систем, методику
соответствую	вычислительного	проведения	проведения	систем, методику	проведения
щего	эксперимента с	вычислительного	вычислительного	проведения	вычислительного
математическ	моделями элементов	эксперимента с	эксперимента с	вычислительного	эксперимента с
ого аппарата	теплоэнергетических	моделями элементов	моделями элементов	эксперимента с	моделями элементов
	систем на ЭВМ	теплоэнергетических	теплоэнергетических	моделями элементов	теплоэнергетических
	технических решений для	систем на ЭВМ	систем на ЭВМ	теплоэнергетических	систем на ЭВМ
	обеспечения	технических решений для	технических решений	систем на ЭВМ	технических решений для

	экономической	обеспечения	для обеспечения	технических решений	обеспечения
	эффективности проекта	экономической	экономической	для обеспечения	экономической
		эффективности проекта	эффективности проекта	экономической	эффективности проекта в
			в типовых ситуациях.	эффективности проекта	ситуациях повышенной
				в ситуациях	сложности, а также в
				повышенной сложности	нестандартных и
					непредвиденных
					ситуациях, создавая при
					этом новые правила и
-	***	05	05	0.5	алгоритмы действий.
	Умеет:	Обучающийся не умеет	Обучающийся умеет	Обучающийся умеет	Обучающийся умеет
	применять, средства и	применять, средства и	применять, средства и	применять, средства и	применять, средства и
	языки моделирования	языки моделирования	языки моделирования	языки моделирования	языки моделирования
	для анализа моделей	для анализа моделей	для анализа моделей	для анализа моделей	для анализа моделей
	элементов	элементов	элементов	элементов	элементов
	теплоэнергетических	теплоэнергетических	теплоэнергетических	теплоэнергетических	теплоэнергетических
	систем,	систем,	систем,	систем,	систем,
	интерпретировать	интерпретировать	интерпретировать	интерпретировать	интерпретировать
	полученные результаты	полученные результаты	полученные	полученные	полученные результаты
	моделей элементов	моделей элементов	результаты моделей	результаты моделей	моделей элементов
	теплоэнергетических	теплоэнергетических	элементов	элементов	теплоэнергетических
	систем, сравнивая их со	систем, сравнивая их со	теплоэнергетических	теплоэнергетических	систем, сравнивая их со
	справочными	справочными	систем, сравнивая их	систем, сравнивая их	справочными
	техническими	техническими	со справочными	со справочными	техническими
	характеристиками	характеристиками	техническими	техническими	характеристиками в
			характеристиками в	характеристиками в	ситуациях повышенной
			типовых ситуациях	типовых ситуациях и	сложности, а также в
				ситуациях	нестандартных и
				повышенной	непредвиденных
				сложности	ситуациях, создавая при
					этом новые правила и
<u> </u>	D	05	0.5	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	алгоритмы действий
	Владеет:	Обучающийся не владеет	Обучающийся владеет	Обучающийся владеет	Обучающийся владеет
	- методикой	методикой разработки	методикой разработки	методикой	методикой разработки
	разработки и	и применения	и применения	разработки и	и применения
	применения	математических	математических	применения	математических

математических	моделей	моделей	математических	моделей
моделей	теплоэнергетических	теплоэнергетических	моделей	теплоэнергетических
теплоэнергетических	систем, навыками	систем, навыками	теплоэнергетических	систем, навыками
систем, навыками	работы с основными	работы с основными	систем, навыками	работы с основными
работы с основными	прикладными	прикладными	работы с основными	прикладными
прикладными	программными	программными	прикладными	программными
программными	средствами для	средствами для	программными	средствами для
средствами для	исследований элементов	исследований	средствами для	исследований элементов
исследований элементов	теплоэнергетических	элементов	исследований	теплоэнергетических
теплоэнергетических	систем	теплоэнергетических	элементов	систем в ситуациях
систем		системв типовых	теплоэнергетических	повышенной сложности,
		ситуациях.	системв типовых	а также в нестандартных
			ситуациях и ситуациях	и непредвиденных
			повышенной	ситуациях, создавая при
			сложности.	этом новые правила и
				алгоритмы действий

1.2.3. Шкала оценивания

Уровень достижений	Отметка в 5-бальной шкале	Зачтено/ не зачтено
высокий	высокий «5»(отлично)	
продвинутый	продвинутый «4»(хорошо)	
пороговый	«3»(удовлетворительно)	зачтено
ниже порогового	«2»(неудовлетворительно)	не зачтено

2. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков, характеризующих этапы формирования компетенций в процессе освоения образовательной программ

ТИПОВЫЕ ЗАДАНИЯ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ:

2.1. Зачет

- а) типовые вопросы к зачету (Приложение 1)
- б) критерии оценивания

При оценке знаний на экзамене учитывается:

- 1. Уровень сформированности компетенций.
- 2. Уровень усвоения теоретических положений дисциплины, правильность формулировки основных понятий и закономерностей.
- 3. Уровень знания фактического материала в объеме программы.
- 4. Логика, структура и грамотность изложения вопроса.
- 5. Умение связать теорию с практикой.
- 6. Умение делать обобщения, выводы.

№	Оценка	Критерии оценки		
Π/Π				
1	2	3		
1	Отлично	Ответы на поставленные вопросы по дисциплине		
		«Математическое моделирование теплоэнергетических		
		систем» излагаются логично, последовательно и не требуют		
		дополнительных пояснений. Соблюдаются нормы		
		литературной речи.		
2	Хорошо	Ответы на поставленные вопросы по дисциплине		
		«Математическое моделирование теплоэнергетических		
		систем» излагаются систематизировано и последовательно.		
		Материал излагается уверенно. Соблюдаются нормы		
		литературной речи.		
3	Удовлетворительно	Допускаются нарушения в последовательности изложения		
		на поставленные вопросы по дисциплине «Математическое		
		моделирование теплоэнергетических систем».		
		Демонстрируются поверхностные знания вопроса, с трудом		
		решаются конкретные задачи. Допускаются нарушения		
		норм литературной речи.		
4	Неудовлетворительно	о Материал излагается непоследовательно, сбивчиво, не		
		представляет определенной системы знаний по дисциплине		
		«Математическое моделирование теплоэнергетических		
		систем». Ответы на дополнительные вопросы отсутствуют.		
		Имеются заметные нарушения норм литературной речи.		

ТИПОВЫЕ ЗАДАНИЯ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕГО КОНТРОЛЯ:

2.2. Опрос устный

- а) типовые вопросы к опросу устному (Приложение 2)
- б) критерии оценивания

При оценке знаний на опросе (устном) учитывается:

- 1. Полнота и глубина ответа (учитывается количество усвоенных фактов, понятий и т.п.);
 - 2. Сознательность ответа (учитывается понимание излагаемого материала);
- 3. Логика изложения материала (учитывается умение строить целостный, последовательный рассказ, грамотно пользоваться специальной терминологией);
- 4. Рациональность использованных приемов и способов решения поставленной учебной задачи (учитывается умение использовать наиболее прогрессивные и эффективные способы достижения цели);
- 5. Своевременность и эффективность использования наглядных пособий и технических средств при ответе (учитывается грамотно и с пользой применять наглядность и демонстрационный опыт при устном ответе);
 - 6. Использование дополнительного материала (обязательное условие);
- 7. Рациональность использования времени, отведенного на задание (не одобряется затянутость выполнения задания, устного ответа во времени, с учетом индивидуальных особенностей студентов).

$N_{\underline{0}}$	Оценка	Критерии оценки		
Π/Π				
1	2	3		
1	Отлично	1) полно и аргументировано отвечает по содержанию		
		задания по дисциплине «Математическое моделирование		
		теплоэнергетических систем»; 2) обнаруживает понимание		
		материала, может обосновать свои суждения, применить		
		знания на практике, привести необходимые примеры не		
		только по учебнику, но и самостоятельно составленные; 3)		
		излагает материал последовательно и правильно.		
2	Хорошо	студент дает ответ, удовлетворяющий тем же требованиям,		
		что и для оценки «5», но допускает 1-2 ошибки, которые		
		сам же исправляет.		
3	Удовлетворительно	студент обнаруживает знание и понимание основных		
		положений данного задания по дисциплине		
		«Математическое моделирование теплоэнергетических		
		систем», но: 1) излагает материал неполно и допускает		
		неточности в определении понятий или формулировке		
		правил; 2) не умеет достаточно глубоко и доказательно		
		обосновать свои суждения и привести свои примеры; 3)		
		излагает материал непоследовательно и допускает ошибки.		
4	Неудовлетворительно	студент обнаруживает незнание ответа на соответствующее		
		задание по дисциплине «Математическое моделирование		
		теплоэнергетических систем», допускает ошибки в		
		формулировке определений и правил, искажающие их		
		смысл, беспорядочно и неуверенно излагает материал.		
		Оценка «2» отмечает такие недостатки в подготовке		
		студента, которые являются серьезным препятствием к		
		успешному овладению последующим материалом.		

2.3. Коллоквиум

- а) типовые вопросы к коллоквиуму (Приложение 3)
- б) критерии оценивания

При оценке знаний на коллоквиуме учитывается:

- 1. Уровень сформированности компетенций.
- 2. Уровень усвоения теоретических положений дисциплины, правильность формулировки основных понятий и закономерностей.
- 3. Уровень знания фактического материала в объеме программы.
- 4. Логика, структура и грамотность изложения вопроса.
- 5. Умение связать теорию с практикой.
- 6. Умение делать обобщения, выводы.

No	Оценка	Критерии оценки		
Π/Π				
1	2	3		
1	Отлично	Студент демонстрирует: глубокое и прочное усвоение		
		программного материала полные, последовательные,		
		грамотные и логически излагаемые ответы при		
		видоизменении задания, свободное владение материалом по		
		дисциплине «Математическое моделирование		
		теплоэнергетических систем», правильно обоснованные		
		принятые решения		
2	Хорошо	Студент демонстрирует: знание программного материала		
		грамотное изложение, без существенных неточностей в		
		ответе на вопрос, правильное применение теоретических		
		знаний по дисциплине «Математическое моделирование		
		теплоэнергетических систем»; владение необходимыми		
		навыками при выполнении практических задач		
3	Удовлетворительно	Студент демонстрирует: усвоение основного материала,		
		при ответе допускаются неточности, при ответе даются		
		недостаточно правильные формулировки, нарушается		
		последовательность в изложении программного материала		
		по дисциплине «Математическое моделирование		
		теплоэнергетических систем», имеются затруднения в		
		выполнении практических заданий		
4	Неудовлетворительно			
		материала по дисциплине «Математическое		
		моделирование теплоэнергетических систем», при ответе		
		возникают ошибки, затруднения при выполнении		
		практических работ		

2.4. Контрольная работа

- а) типовые задания к контрольной работе (Приложение 4)
- б) критерии оценивания

Выполняется в письменной форме. При оценке работы студента учитывается:

- 1. Правильное раскрытие содержания основных вопросов темы, правильное решение задач.
- 2. Самостоятельность суждений, творческий подход, научное обоснование раскрываемой проблемы.
- 3. Правильность использования цитат (если цитата приводится дословно, то надо взять ее в кавычки и указать источник с указанием фамилии автора, названия произведения, места и города издания, тома, части, параграфа, страницы).
 - 4. Наличие в конце работы полного списка литературы.

No	Оценка	Критерии оценки			
п/п					
1	2	3			
1	Отлично	Студент выполнил работу без ошибок и недочетов по			
		дисциплине: «Математическое моделирование			
		теплоэнергетических систем», допустил не более одного недочета			
2	Хорошо	Студент выполнил работу полностью по дисциплине:			
		«Математическое моделирование теплоэнергетических			
		систем», но допустил в ней не более одной негрубой			
		ошибки и одного недочета, или не более двух недочетов			
3	Удовлетворительно	Студент правильно выполнил не менее половины работы по дисциплине: «Математическое моделирование			
		теплоэнергетических систем» или допустил не более двух			
		грубых ошибок, или не более одной грубой и одной			
		негрубой ошибки и одного недочета, или не более двух-трех			
		негрубых ошибок, или одной негрубой ошибки и трех			
		недочетов, или при отсутствии ошибок, но при наличии			
		четырех-пяти недочетов, плохо знает материал, допускает			
		искажение фактов			
4	Неудовлетворительно	Студент допустил число ошибок и недочетов превосходящее			
		норму, при которой может быть выставлена оценка «3», или			
		если правильно выполнил менее половины работы			
5	Зачтено	Выполнено правильно не менее 50% заданий, работа			
		выполнена по стандартной или самостоятельно			
		разработанной методике по дисциплине: «Математическое			
		моделирование теплоэнергетических систем», в освещении			
		вопросов не содержится грубых ошибок, по ходу решения			
		сделаны аргументированные выводы			
6	Не зачтено	Студент не справился с заданием по дисциплине:			
		«Математическое моделирование теплоэнергетических			
		систем» (выполнено правильно менее 50% задания			
		варианта), не раскрыто основное содержание вопросов,			
		имеются грубые ошибки в освещении вопроса, в решении			
		задач, а также выполнена не самостоятельно.			

2.5. Тестирование

- а) типовые вопросы и задания к входному тестированию по дисциплине (Приложение 5)
- б) типовые вопросы и задания итогового тестирования (Приложение 6)
- б) критерии оценки

При оценке знаний по результатам тестов учитывается:

- 1. Уровень сформированности компетенций.
- 2. Уровень усвоения теоретических положений дисциплины, правильность формулировки основных понятий и закономерностей.
- 3. Уровень знания фактического материала в объеме программы.
- 4. Логика, структура и грамотность изложения вопроса.
- 5. Умение связать теорию с практикой.
- 6. Умение делать обобщения, выводы.

$N_{\underline{0}}$	Оценка	Критерии оценки		
п/п				
1	2	3		
1	Отлично	если выполнены следующие условия:		
		даны правильные ответы не менее чем на 90% вопросов		
		теста, исключая вопросы, на которые студент должен дать		
		свободный ответ;		
		на все вопросы, предполагающие свободный ответ,		
		студент дал правильный и полный ответ		
2	Хорошо	если выполнены следующие условия:		
		– даны правильные ответы не менее чем на 75% вопросов		
		теста, исключая вопросы, на которые студент должен дать		
		свободный ответ;		
		- на все вопросы, предполагающие свободный ответ,		
		студент дал правильный ответ, но допустил		
		незначительные ошибки и не показал необходимой		
2	***	полноты		
3	Удовлетворительно	если выполнены следующие условия:		
		– даны правильные ответы не менее чем на 50% вопросов теста, исключая вопросы, на которые студент должен дать		
		свободный ответ;		
		– на все вопросы, предполагающие свободный ответ,		
		студент дал непротиворечивый ответ, или при ответе допустил значительные неточности и не показал полноты		
4	Неудовлетворительно	если студентом не выполнены условия, предполагающие		
7	поудовлетворительно	оценку «удовлетворительно».		
5	Зачтено	выставляется при соответствии параметрам		
	34 110110	экзаменационной шкалы на уровнях «отлично», «хорошо»,		
		«удовлетворительно»		
6	Не зачтено	выставляется при соответствии параметрам		
		экзаменационной шкалы на уровне «неудовлетворительно»		

3. Перечень и характеристики процедуры оценивания знаний, умений, навыков, характеризующих этапы формирования компетенций

Процедура проведения текущего контроля успеваемости и промежуточной аттестации регламентируется локальным нормативным актом.

Перечень и характеристика процедур текущего контроля и промежуточной аттестации по дисциплине

№	Наименование оценочного средства	Периодичность и способ проведения процедуры оценивания	Виды вставляемых оценок	Форма учета
1	2	3	4	5
1.	Зачет	Раз в семестр, по окончании изучения	зачтено/незачтено	Ведомость, зачетная книжка, портфолио

		дисциплины		
2.	Опрос устный	Систематически на занятиях	По пятибалльной шкале	Журнал успеваемости преподавателя
4.	Контрольная работа	Раз в семестр	зачтено/незачтено	Тетрадь для контрольных работ, журнал успеваемости преподавателя
5.	Коллоквиум	Систематически на занятиях	По пятибалльной шкале	Журнал успеваемости преподавателя
6.	Тестирование	Входное тестирование по дисциплине — вначале изучения дисциплины (в начале семестра) Итоговое тестирование — по окончании изучения дисциплины	По пятибалльной шкале или зачтено/незачтено	Журнал успеваемости преподавателя

Зачет:

Типовые вопросы и задания:

ОПК-2

- 1. Методы математического моделирования действия и устройства проектируемых изделий и объектов с обоснованием принятых технических решений для обеспечения экономической эффективности проекта. Вид информационной модели и от чего она зависит.
 - 2. Методы математического моделирования: что отражает модель.
 - 3. Методы математического моделирования: что является основой моделирования.
- 4. Методы математического моделирования. Что является математической моделью объекта-оригинала.
 - 5. Методы математического моделирования. Когда имеет смысл понятие модели.
- 6. Методы математического моделирования. Что является существенным при построении его информационной модели.
- 7. Методы математического моделирования. Что представляет собой табличная информационная модель описания объекта.

ПК-4

- 1. Основные типы математических моделей элементов теплоэнергетических систем, основные принципы построения математических моделей элементов теплоэнергетических систем, методику проведения вычислительного эксперимента с моделями элементов теплоэнергетических систем на ЭВМ. Что относится к числу математических моделей.
- 2. Основные типы математических моделей элементов теплоэнергетических систем, основные принципы построения математических моделей элементов теплоэнергетических систем, методику проведения вычислительного эксперимента с моделями элементов теплоэнергетических систем на ЭВМ. Приведите примеры информационной модели.
- 3. Основные типы математических моделей элементов теплоэнергетических систем, основные принципы построения математических моделей элементов теплоэнергетических систем, методику проведения вычислительного эксперимента с моделями элементов теплоэнергетических систем на ЭВМ. Рисунки. карты, чертежи, диаграммы, схемы, графики представляют собой модели какого вида.
- 4. Основные типы математических моделей элементов теплоэнергетических систем, основные принципы построения математических моделей элементов теплоэнергетических систем, методику проведения вычислительного эксперимента с моделями элементов теплоэнергетических систем на ЭВМ. Что такое информационная модель?
- 5. Основные типы математических моделей элементов теплоэнергетических систем, основные принципы построения математических моделей элементов теплоэнергетических систем, методику проведения вычислительного эксперимента с моделями элементов теплоэнергетических систем на ЭВМ. Что такое математическая модель?
- 6. Основные типы математических моделей элементов теплоэнергетических систем, основные принципы построения математических моделей элементов теплоэнергетических систем, методику проведения вычислительного эксперимента с моделями элементов теплоэнергетических систем на ЭВМ. Что понимают под моделью.
- 7. Основные типы математических моделей элементов теплоэнергетических систем, основные принципы построения математических моделей элементов

теплоэнергетических систем, методику проведения вычислительного эксперимента с моделями элементов теплоэнергетических систем на ЭВМ. Что такое образец в моделировании?

8. Основные типы математических моделей элементов теплоэнергетических систем, основные принципы построения математических моделей элементов теплоэнергетических систем, методику проведения вычислительного эксперимента с моделями элементов теплоэнергетических систем на ЭВМ. Что такое компьютерное моделирование.

Опрос устный Типовые вопросы:

ОПК-2

- 1. Методы математического моделирования. Что такое моделирование.
- 2. Методы математического моделирования. Что такое модель.
- 3. Методы математического моделирования. Что содержит модель по сравнению с моделируемым объектом.
- 4. Методы математического моделирования. Что предполагает процесс построения модели.
- 5. Методы математического моделирования. Что является динамической (описывающей изменение состояния объекта) моделью.
- 6. Методы математического моделирования. Что является информационной моделью, которая имеет табличную структуру.

ПК-4

- 1. Основные типы математических моделей элементов теплоэнергетических систем, основные принципы построения математических моделей элементов теплоэнергетических систем, методику проведения вычислительного эксперимента с моделями элементов теплоэнергетических систем на ЭВМ. Что является информационной моделью, которая имеет сетевую структуру.
- 2. Основные типы математических моделей элементов теплоэнергетических систем, основные принципы построения математических моделей элементов теплоэнергетических систем, методику проведения вычислительного эксперимента с моделями элементов теплоэнергетических систем на ЭВМ. Что такое математическое моделирование.
- 3. Основные типы математических моделей элементов теплоэнергетических систем, основные принципы построения математических моделей элементов теплоэнергетических систем, методику проведения вычислительного эксперимента с моделями элементов теплоэнергетических систем на ЭВМ. Что называется натуральным (материальным) моделированием.
- 4. Основные типы математических моделей элементов теплоэнергетических систем, основные принципы построения математических моделей элементов теплоэнергетических систем, методику проведения вычислительного эксперимента с моделями элементов теплоэнергетических систем на ЭВМ. Расписание движения поездов может рассматриваться как пример.
- 5. Основные типы математических моделей элементов теплоэнергетических систем, основные принципы построения математических моделей элементов теплоэнергетических систем, методику проведения вычислительного эксперимента с моделями элементов теплоэнергетических систем на ЭВМ. Могут ли у разных объектов быть одинаковые модели?

Коллоквиум Типовые вопросы и задания:

ОПК-2

- 1. Методы математического моделирования действия и устройства проектируемых изделий и объектов с обоснованием принятых технических решений для обеспечения экономической эффективности проекта. Вид информационной модели и от чего она зависит.
 - 2. Методы математического моделирования: что отражает модель.
 - 3. Методы математического моделирования: что является основой моделирования.
- 4. Методы математического моделирования. Что является математической моделью объекта-оригинала.
 - 5. Методы математического моделирования. Когда имеет смысл понятие модели.
- 6. Методы математического моделирования. Что является существенным при построении его информационной модели.
- 7. Методы математического моделирования. Что представляет собой табличная информационная модель описания объекта.

ПК-4

- 1. Основные типы математических моделей элементов теплоэнергетических систем, основные принципы построения математических моделей элементов теплоэнергетических систем, методику проведения вычислительного эксперимента с моделями элементов теплоэнергетических систем на ЭВМ. Что относится к числу математических моделей.
- 2. Основные типы математических моделей элементов теплоэнергетических систем, основные принципы построения математических моделей элементов теплоэнергетических систем, методику проведения вычислительного эксперимента с моделями элементов теплоэнергетических систем на ЭВМ. Приведите примеры информационной модели.
- 3. Основные типы математических моделей элементов теплоэнергетических систем, основные принципы построения математических моделей элементов теплоэнергетических систем, методику проведения вычислительного эксперимента с моделями элементов теплоэнергетических систем на ЭВМ. Рисунки. карты, чертежи, диаграммы, схемы, графики представляют собой модели какого вида.
- 4. Основные типы математических моделей элементов теплоэнергетических систем, основные принципы построения математических моделей элементов теплоэнергетических систем, методику проведения вычислительного эксперимента с моделями элементов теплоэнергетических систем на ЭВМ. Что такое информационная модель?
- 5. Основные типы математических моделей элементов теплоэнергетических систем, основные принципы построения математических моделей элементов теплоэнергетических систем, методику проведения вычислительного эксперимента с

моделями элементов теплоэнергетических систем на ЭВМ. Что такое математическая модель?

- 6. Основные типы математических моделей элементов теплоэнергетических систем, основные принципы построения математических моделей элементов теплоэнергетических систем, методику проведения вычислительного эксперимента с моделями элементов теплоэнергетических систем на ЭВМ. Что понимают под моделью.
- 7. Основные типы математических моделей элементов теплоэнергетических систем, основные принципы построения математических моделей элементов теплоэнергетических систем, методику проведения вычислительного эксперимента с моделями элементов теплоэнергетических систем на ЭВМ. Что такое образец в моделировании?
- 8. Основные типы математических моделей элементов теплоэнергетических систем, основные принципы построения математических моделей элементов теплоэнергетических систем, методику проведения вычислительного эксперимента с моделями элементов теплоэнергетических систем на ЭВМ. Что такое компьютерное моделирование.

Приложение 4

Контрольная работа Типовые задания:

ОПК- 2

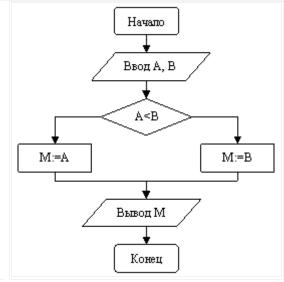
Задание№1. Решить стандартную профессиональную задачу «Одномерная задача теплопроводности для неоднородного стержня» с применением естественнонаучных и общеинженерных знаний, методов математического анализа.

Задание№2. Решить стандартную профессиональную задачу «Нестационарная задача теплопроводности в однородном сечении цилиндрической формы» с применением естественнонаучных и общеинженерных знаний, методов математического анализа.

ПК-4

Задание№1. Создать математическую модель «Одномерная задача теплопроводности для неоднородного стержня» с применением средств и языков моделирования для анализа моделей элементов теплоэнергетических систем, интерпретировать полученные результаты моделей элементов теплоэнергетических систем, сравнивая их со справочными техническими характеристиками.

Задание№2. Создать математическую модель «Нестационарная теплопроводности в однородном сечении цилиндрической формы» с применением средств и языков моделирования для анализа моделей элементов теплоэнергетических интерпретировать полученные результаты моделей элементов теплоэнергетических сравнивая co справочными систем, ИХ техническими характеристиками.

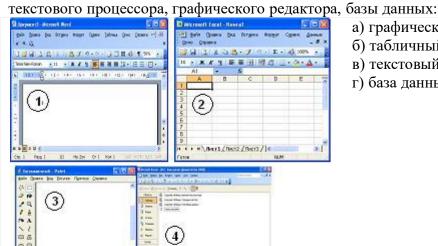

Приложение 5

Входное тестирование

Типовые вопросы и задания:

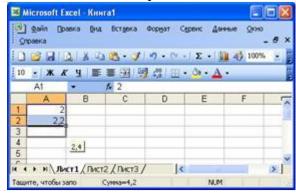
- 1. Информация в обыденном (житейском) смысле
- а) набор знаков;
- б) сообщения, передаваемые в форме знаков, сигналов;
- в) сведения, полностью снимающие или уменьшающие имеющуюся до их получения неопределенность;
- г) сведения об окружающем мире и протекающих в нем процессах, воспринимаемые человеком или специальными устройствами;
- д) сведения, обладающие новизной.
- 2. Информация, не зависящая от мнения или суждения, является
- а) достоверной;
- б) актуальной;
- в) объективной;
- г) полезной;
- д) доступной.
- 3. Примером текстовой информации может служить
- а) иллюстрация в книге по информатике;
- б) реплика актера в спектакле;
- в) музыкальная заставка;
- г) фотография;
- д) таблица умножения.
- 4. Количество символов (разрядов) в сообщении
- а) объем данных;
- б) количество информации;
- в) коэффициент содержательности;
- г) тезаурус.
- 5. Один Кбайт равен
- а) 1000 байт;
- б) 1024 байт;
- в) 210 байт;
- г) 28 байт.
- 6. Устройство, хранящее информацию, с которой компьютер работает непосредственно в данное время

- a) ОЗУ;
- б) ВЗУ;
- в) АЛУ;
- г) УУ;
- д) ПЗУ.
- 7. Аналитическую машину спроектировал
- а) Бэббидж;
- б) Фон Нейман;
- в) Левлейс;
- г) Паскаль.
- 8. Сеть, связывающая ПК и принтеры, находящиеся в одном здании или комплексе зданий
- а) локальная сеть;
- б) территориально-распределенная сеть;
- в) глобальная сеть;
- г) Интернет;
- д) LAN.
- 9. Язык разметки гипертекста
- a) WWW;
- б) HTML;
- в) HTTP;
- г) URL.
- 10. Базы данных с табличной формой организации информации
- а) статистические;
- б) иерархические;
- в) СУБД;
- г) реляционные.
- 11. Ключевое поле
- а) первое поле таблицы;
- б) поле, которое может иметь только тип данных «Счетчик»;
- в) поле, значения которого не могут повторяться;
- г) любое поле, содержащее числа.
- 12. Преднамеренной угрозой безопасности информации является
- а) наводнение;
- б) ошибка администратора;
- в) повреждение кабеля, по которому идет передача, в связи с погодными условиями;
- г) кража.
- 13. Компьютерные вирусы по среде обитания классифицируются как
- а) резидентные и нерезидентные;
- б) не опасные, опасные, очень опасные;
- в) паразиты, репликаторы, невидимки, мутанты, троянские;
- г) сетевые, файловые, загрузочные, макровирусы.
- 14. Результатом работы алгоритма, приведенного в виде блок-схемы, является
 - а) определение меньшего из чисел А и В;
 - б) определение большего из чисел А и В;
 - в) определение меньшего из чисел А, В и М;
 - г) определение большего из чисел А, В и М.

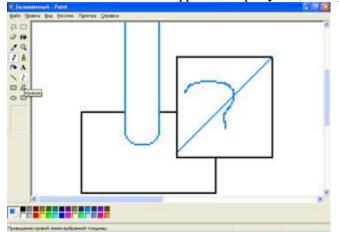

- 15. Верные операторы
- a) B:=A;
- б) S+2=4.52;
- в) readln(F, H);
- Γ) readln(F;H).
- 16. Программные средства, предназначенные для подключения различных устройств компьютера
- а) утилиты;
- б) драйвера;
- в) интерфейсы;
- г) контроллеры.
- 17. BIOS
- а) игровая программа;
- б) командный язык операционной системы;
- в) диалоговая оболочка;
- г) базовая система ввода-вывода.
- 18. Минимальным объектом, используемым в текстовом редакторе, является
- а) слово;
- б) пиксель;
- в) абзац;
- г) символ.
- 19. Текстовый процессор
- a) Windows;
- б) Word;
- в) WordPad;
- г) Блокнот;
- д) Quark Press;
- e) Page Maker.
- 20. Рабочая область электронной таблицы состоит из
- а) пустой страницы;
- б) ячеек;
- в) пустого слайда;
- г) строк;
- д) столбцов.
- 21. Ячейка электронной таблицы может содержать
- а) формулу;
- б) число;

- в) гиперссылку;
- г) текст.

1



22. Соответствие между типовыми структурами интерфейсов табличного процессора,


- а) графический редактор;
- б) табличный процессор;
- в) текстовый редактор;
- г) база данных.

23. Выполняется операция

- а) объединения ячеек;
- б) удаления столбца;
- в) заполнения ряда значений;
- г) сложения чисел.

24. На листе Pain создан фрагмент рисунка, отображающийся в режиме

- а) форматирования рисунка;
- б) просмотра рисунка;
- в) редактирования рисунка;
- г) добавления рисунка.

25. Соответствие между приложением Microsoft Office и ярлыком этого приложения

- 1) мультимедийные презентации; 2) электронная таблица;
- 3) текстовый редактор;
- 4) база данных;

г) .

26. Слайды PowerPoint представлены в режиме

- а) просмотра слайдов;
- б) обычном;
- в) сортировщика слайдов.

- 27. Услуги Интернета
- а) ftp-система;
- б) почтовый адрес;
- в) электронная почта;
- г) irc, icq;
- д) рисование;
- e) www.
- 28. Ввод формулы в текущую ячейку MS Excel начинается с символа
- а) ((круглая скобка);
- б) \$ (знак доллара);
- B) = (знак равно);
- г) # (знак номера).
- 29. Вызов функции автосуммирования выполняется нажатием на панели инструментов «Стандартная» кнопки
 - a) 🛅;
- б) 👺;
- B) Σ;
- г) 🔽.
- 30. Расширение веб-страницы
- a) *.txt;
- б) *.htm;
- в) *.doc;
- г) *.exe.
- 31. Соответствие между математическим утверждением и его формулировкой
- 1) «Через любые три точки, не лежащие на одной прямой, проходит плоскость, и притом только одна»;
- 2) «Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются»;
- 3) «Если две прямые параллельны третьей прямой, то они параллельны»;
- а) определение;
- б) теорема;
- в) аксиома.
- 32. Заданы множества $A=\{2,4,6\}$ и $B=\{6,2,4\}$, тогда верным утверждением будет
- а) «Множества A и B не имеют общих элементов»;
- б) «Множество А включает в себя множество В»;
- в) «Множество А есть подмножество множества В»;
- г) «Множества А и В равны».
- 33. Даны два множества A={простые числа < 20} и B={нечетные числа < 20}, тогда А $^{\mathbf{Y}}$ В
- a) {1, 2, 3, 5, 7, 9, 11, 13, 15, 17, 19};
- б) {2};
- в) {1, 9, 15};
- Γ) {3, 5, 7, 11, 13, 17, 19}.

- 34. Количество различных способов, которыми можно выбрать три тома из восьмитомного собрания сочинений Л. Н. Толстого
- a) 56;
- б) 132;
- в) 24;
- r) 3.
- 35. В ящике в пять раз больше красных шаров, чем черных. Тогда вероятность того, что вынутый наугад шар окажется красным, равна
- a) 1/6;
- б) 5/6;
- в) 0.6;
- г) 0.5.
- 36. Задана таблица распределения случайной величины.

X	1	3	9	16
р	0.1	0.2	0.3	C

Тогда значение С в таблице равно

- a) 0.3;
- б) 0.2;
- в) 0.5;
- r) 0.4.
- 37. Случайная величина распределена «нормально с параметрами 3, 2» (N[3,2]). Тогда ее математическое ожидание и дисперсия равны
- a) M(x)=0; D(x)=2;
- б) M(x)=9; D(x)=2;
- B) M(x)=3; D(x)=1;
- Γ) M(x)=3; D(x)=4.
- 38. Вероятность достоверного события равна
- a) 0;
- б) 1;
- в) 0.1;
- г) может быть любым числом.
- 39. По статистическому распределению выборки установите ее объем

xi	1	2	3
ni	6	7	8

- a) 21;
- б) 13;
- в) 9;
- г) 30.

Приложение 6

Итоговое тестирование: ОПК-2

- 1. Методы разработки физических и математических моделей исследуемых процессов, явлений и объектов, относящихся к профессиональной сфере: что такое модель объекта?
- а. Объект-заместитель объекта-оригинала, обеспечивающий изучение всех свойств оригинала
- b. Объект-оригинал, который обеспечивает изучение некоторых своих свойств
- с. Объект-заместитель объекта-оригинала, обеспечивающий изучение некоторых свойств оригинала
- d. Объект-оригинал, который обеспечивает изучение всех своих свойств
- 2. Методы разработки физических и математических моделей исследуемых процессов, явлений и объектов, относящихся к профессиональной сфере:: какие граничные условия называются естественными?
- а. Условия, налагаемые на функцию, которая ищется.
- b. Условия, которые накладываются на производные функции, ищется, по пространственным координатам. +
- с. Условия, наложено на различные внешние силовые факторы, действующие на точки поверхности тела.
- d. Условия, наложено на различные внутренние факторы, которые действуют внутри тела.

- 3. Методы разработки физических и математических моделей исследуемых процессов, явлений и объектов, относящихся к профессиональной сфере:: какому вариационной принципа соответствует формулировка МКЭ в перемещениях?
- а. Минимума дополнительной работы Кастильяно.
- b. Минимума потенциальной энергии Лагранжа.
- с. Принцип Хувашицу.
- d. Максимум потенциальной работы Кастильяно.
- 4. Методы разработки физических и математических моделей исследуемых процессов, явлений и объектов, относящихся к профессиональной сфере:: какой тип математических моделей использует алгоритмы?
- а. Аналитические.
- b. Знаковые.
- с. Имитационные.
- d. Детерминированные.
- 5. Методы разработки физических и математических моделей исследуемых процессов, явлений и объектов, относящихся к профессиональной сфере:: какой тип моделей выделен в классификации по принципам построения.
- а. Наглядные.
- Аналитические.
- с. Знаковые.
- d. Математические.
- 6. Методы разработки физических и математических моделей исследуемых процессов, явлений и объектов, относящихся к профессиональной сфере:: какие зависимые переменные существуют в моделях микроуровня?
- а. Время.
- b. Пространственные координаты.
- с. Плотность и масса.
- d. Фазовые координаты.
- 7. Методы разработки физических и математических моделей исследуемых процессов, явлений и объектов, относящихся к профессиональной сфере: какой метод дискретизации модели относится к микроуровня?
- а. Метод свободных сетей.
- b. Метод конечных разностей.
- с. Метод узловых давлений.
- d. Табличный метод.

ОПК-4

- 1. Применение математических моделей теплоэнергетических систем, навыками работы с основными прикладными программными средствами для исследований элементов теплоэнергетических систем: что такое уровне проектирования?
- а. Временное распределения работ по созданию новых объектов в процессе проектирования.
- b. Совокупность языков, моделей, постановок задач, методов получения описаний гделибо иерархического уровня.
- с. Определенная последовательность решения проектных задач различных иерархических уровней.
- d. Описание системы или ее части с де-либо определяемой точки зрения, которая определяется функциональными, физическими или иного типа отношениями между свойствами и элементами.
- 2. Применение математических моделей теплоэнергетических систем, навыками работы с основными прикладными программными средствами для исследований элементов

теплоэнергетических систем: что называют краевыми условиями для системы уравнений математической модели?

- а. Условия, накладываемые на границе исследуемой области и в начальный момент времени. +
- b. Условия, налагаемые на функцию, ищут.
- с. Условия, налагаемые на производные искомой функции.
- d. Условия, накладываемые в начальный момент времени.
- 3. Применение математических моделей теплоэнергетических систем, навыками работы с основными прикладными программными средствами для исследований элементов теплоэнергетических систем: что такое аспекты проектирования?
- а. Временное распределение работ по созданию объектов в процессе проектирования.
- b. Совокупность языков, моделей, постановок задач, методов получения описаний гделибо иерархического уровня.
- с. Определенная последовательность решения проектных задач различных иерархических уровней.
- d. Описание системы или ее части с де-либо определяемой точки зрения, определяется функциональными, физическими или иного типа отношениями между свойствами и элементами. +
- 4. Применение математических моделей теплоэнергетических систем, навыками работы с основными прикладными программными средствами для исследований элементов теплоэнергетических систем: укажите, какой из этапов выполняется при математическом моделировании после анализа.
- а. Создание объекта, процесса или системы.
- b. Проверка адекватности модели и объекта, процесса или системы на основе вычислительного и натурного эксперимента.
- с. Корректировка постановки задачи после проверки адекватности модели.
- d. Использование модели.
- 5. Применение математических моделей теплоэнергетических систем, навыками работы с основными прикладными программными средствами для исследований элементов теплоэнергетических систем: что такое параметры системы?
- а. Величины, которая выражают свойство или системы, или ее части, или окружающей среды. $^{+}$
- b. Величины, характеризующие энергетическое или информационное наполнение элемента или подсистемы.
- с. Свойства элементов объекта.
- d. Величины, которая характеризует действия, которые могут выполнять объекты.
- 6. Применение математических моделей теплоэнергетических систем, навыками работы с основными прикладными программными средствами для исследований элементов теплоэнергетических систем: какие формулировки МКЭ существуют в зависимости от функции, ищут?
- а. В перемещениях и деформациях
- b. В деформациях.
- с. В напряжениях и градиентах.
- d. Смешанная и гибридная.
- 7. Применение математических моделей теплоэнергетических систем, навыками работы с основными прикладными программными средствами для исследований элементов теплоэнергетических систем: какие зависимые переменные существуют в моделях макроуровня?
- а. Время и характеристики потока.
- b. Фазовые переменные типа потенциала.
- с. Пространственные координаты.
- d. Фазовые переменные типа потока.

- 8. Применение математических моделей теплоэнергетических систем, навыками работы с основными прикладными программными средствами для исследований элементов теплоэнергетических систем: что такое проектирование?
- а. Процесс, который заключается в получении и преобразовании исходного описания объекта в конечный описание на основе выполнения комплекса работ исследовательского, расчетного и конструкторского характера.
- b. Процесс создания в заданных условиях описания несуществующего объекта на базе первичной описания.
- с. Первоначальный описание объекта проектирования.
- d. Вторичный описание объекта.

Лист дополнений и изменений в рабочую программу дисциплины

«Моделирование и оптимизация теплотехнологических процессов» (наименование дисциплины)

на 2025-2026 учебный год

Рабочая программа пересмотрена на заседании кафедры «Инженерные системы и экология», протокол № 8 от 22 апреля 2025 г.

Зав. кафедрой, доцент

Р.А. Арсланова

В рабочую программу вносятся следующие изменения:

- 8.2. Перечень необходимого лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, используемого при осуществлении образовательного процесса по дисциплине
- 7-Zip;
- Adobe Acrobat Reader DC;
- Apache Open Office;
- VLC media player;
- Kaspersky Endpoint Security
- Yandex browser
- 8.3. Перечень современных профессиональных баз данных и информационных справочных систем, доступных обучающимся при освоении дисциплины
- 1. Электронная информационно-образовательная среда Университета (http://moodle.aucu.ru).
- 2. Электронно-библиотечная система «Университетская библиотека онлайн» (https://biblioclub.ru/).
- 3. Электронно-библиотечная система «IPRsmart» (http://www.iprbookshop.ru).
- 4. Электронно-библиотечная система «PROFобразование» (https://profspo.ru/);
- 5. Консультант+ (<u>http://www.consultant-urist.ru/</u>).

1. Электронная информационно-образовательная	Программное обеспечение, без срока действия.
среда Университета:(http://moodle.aucu.ru);	
2. Электронно-библиотечная система «IPRsmart»	ООО Компания «Ай Пи Ар Медиа» договор №
(www.iprbookshop.ru).	11810/24П от 02.09.2024 г. (срок действия –24
	месяца).
3. Консультант + (<u>http://www.consultant-urist.ru/</u>).	ООО ИЦ «Консультант Сервис» договор № 197-К
	от 01.04.2025г. (срок действия – до 01.04.2026г.).
4. Федеральный институт промышленной	Онлайн ресурс со свободным доступом.
собственности (http://wwwl.fips.ru/)	

Составители изменений и дополнений: руководитель ОПОП, доцент

Р.А. Арсланова

Председатель МКН «Теплоэнергетика и теплотехника» направленность (профиль) «Энергообеспечение предприятий»

доцент

Р.А. Арсланова

« <u>22</u> » <u>апреля</u> 2025 г.